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1. Introduction 
 
Design of an accelerator 加速器的設計 
 
To design an accelerator, one first considers the motion of a single charged 
particle in the environment of magnets and RF cavities. The motion of this 
single particle in this environment must be stable.  
 
For example, in a circular accelerator, the particle must stay inside of the 
accelerator vacuum chamber for many many revolutions, typically >>1010 
revolutions --- and much more than that of the lifetime of earth around the 
sun! 
 
This is of course not an easy task. Accelerator physicists design accelerators 
with three basic elements: 
 
 Element Function Field Focusing 
 Dipoles Guide particle trajectory Magnetic weak focusing in x 
 Quadrupoles Confine particle motion near  Magnetic x,y 
  the design trajectory 
 RF cavities Keep particle energy near the  Electric z 
  design energy 
 
All these are just to make sure that single-particle motion is stable. With 
these three elements arranged, the basic layout of an accelerator is 
determined. 
 
Having provided a design trajectory, and made sure that there are focusing in 
x,y, and z, there seems to be nothing left to do. But that is not true. We still 
have to examine the stability of the beam particles in much more detail. 
 



Single-particle stability 單粒子穩定性  
 
This is one very important area of accelerator physics, i.e. single-particle 
nonlinear dynamics (李世元，郭錦城). 
 
Multi-particle stability 多粒子穩定性  
 
But there is a second significant part of accelerator physics. It is called 
multi-particle collective beam instability effects, sometimes also called 
collective beam instabilities, coherent beam instabilities, beam instabilities, 
or simply instabilities. 我們的主題。 
 
After an accelerator is built, it is clear that the users will continue to ask for 
stronger and stronger beams. However, when the beam intensity is 
increased, the beam is bound to become unstable at some point. Beyond that 
point, the beam becomes unstable. So the first instinct is to operate the 
accelerator below that instability limit and never to exceed it. 
 
But that is not the right way to think. What we actually do is to try to 
understand this instability mechanism (accelerator physics!), and cure it. 
After curing it, the beam intensity can be increased again. 
 
But what happens is that then another instability mechanism will take over, 
limiting the beam intensity at some higher limit. We then understand and 
cure it again. This process repeats. So the net beam intensity ends up 
showing a behavior like this: 
 

 



Note that collective instabilities are bound to occur. There is no way that an 
accelerator does not need to address questions on collective instabilities. 
This is because we will always try to push the beam intensity to its 
maximum. And at that maximum, by definition, there is a limiting 
instability. The study of collective instabilities cannot be avoided. 集體不穩
定性的研究在任何加速器中都是不可避免的。 

 
A side remark to be made here: Building an accelerator is not building a 
bridge 造加速器不是造橋鋪路. After a bridge is built, the job is done. The 
bridge then stays there the same way as it was built until one day it is 
demolished. In contrast, an accelerator is a living object. After it is built, an 
accelerator is constantly being improved. The concept of “design goal” of an 
accelerator applies only for the government funding agencies. A real 
accelerator always continues to grow, reaching the original design goal, and 
exceeding it. The “design goal” means nothing to an accelerator physicist, as 
illustrated in the above figure. An accelerator physicist must keep the right 
mind-set that his/her job is not done simply because an accelerator has been 
built or when its design goal has been met – an accelerator is not a bridge.  
 



Note also that there is not just one instability. There are actually many types 
of instabilities. The beam can be stable or unstable depending on which 
instability mechanism one is talking about. For some instability 
mechanisms, the beam is always unstable but is fortunately stabilized by 
some stabilizing mechanisms. For some other instability mechanisms, the 
beam is stable below a certain intensity threshold, while unstable above it. 
Each instability occurs under some different conditions and at different 
beam intensities. But there are many of them, occurring at higher and higher 
intensities. So one would actually encounter a whole list of all kinds of 
possible instabilities. After encountering one instability mechanism and 
curing it, you will meet the next one.  
 
Over the years, accelerator physicists have observed, explained, and 
(mostly) cured several intricate instability mechanisms: 
 

negative mass instability  1959 
resistive wall instability  1960 
beam break up instability  1966 
head-tail instability  1969 
microwave instability  1969 
beam-beam limit in colliders  1971 
potential well distortion  1971 
anomalous bunch lengthening 1974 
transverse mode coupling instability  1980  
coherent synchrotron radiation instability  1990 
sawtooth instability 1993 
electron beam-ion instability  1996 
electron cloud instability  1997 
microbunching instability 2005 
 



Roughly, that is one instability mechanism every ~3 years. An example of beam 
break-up instability in an electron linac is shown below: 

 
 
When the beam is well steered down the long 3-km linac at SLAC, the beam 
profile at the end looks nicely packed. When the beam trajectory is slightly mis-
steered, the beam tail gets perturbed by the “wakefields” generated by the beam 
head. This instability, once understood, was cured by precision alignment of the 
linac, plus several trajectory control feedback systems. 
 
History shows new instabilities are discovered as we overcome the older 
instabilities and push for higher and higher beam intensities. The latest are found in 
the most advanced accelerators, for example in factory-class collider storage rings 
and free electron laser linear accelerators. The process is still continuing as new 
accelerator concepts are invented, and as older accelerator concepts were pushed 
for higher performances.  



 
2. Wakefields and Impedances 

 
A charged particle always carries electromagnetic fields 
 
Collective instabilities mostly come from an intense beam interacting with 
its vacuum chamber environment in an accelerator. How does the interaction 
take place? One first has to know that each charged particle always is 
attached with it some electric field lines. You can distort these field lines but 
you can never cut them loose from the charge under any circumstances. This 
is called Gauss’s law. (*) 奇妙的高斯定律 
 

(*) Gauss law is an amazing law. Mathematically, it reads ∇•E =ρ/ε. 
Physically it reads: Electric field lines are absolutely attached to the 
charges, no matter how violently you shake the particle trying to shake 
off its field lines. 

 
If the charge is stationary and if it is in a free space, its field lines radiate 
radially outwards isotropically, as in fig.(a) below. For a moving charge, we 
see fig.(b). When v approaches c, the field lines get contracted into a thin 
“pancake”. The pancake is attached to the particle and moves with it with 
velocity v.  When we take the ultrarelativistic limit v=c, then the pancake 
reduces to infinitely thin sheet, as shown in fig.(c). All the electric fields stay 
in an infinitely thin sheet. This contraction is the result of theory of 
relativity. 

 



 
Since in accelerators, the particles typically move with speed very close to c, 
we will now think of the picture in (c). In the TPS (Taiwan Photon Source), 
for example, electrons will move with v=0.99999999 c. 
 
In addition to the electric field as shown in the above figure, when the 
particle is moving, it also generates a magnetic field. This magnetic field has 
the same distribution as the electric field, i.e. it contracts to a thin pancake 
when the particle’s velocity approaches c, and into an infinitely thin sheet 
when v=c. Direction of the electric field is radial; direction of the magnetic 
field is azimuthal (right-hand rule).  
 
However, the magnetic field differs from the electric field on one important 
point. When v=0 as in fig.(a) above, there is electric field, but no magnetic 
field. When v increases, the magnitude of the magnetic field increases, but 
still weaker than the electric field. Only when v=c, the magnetic field 
increases to become the same magnitude as the electric field. The fact that 
the magnitudes of the electric and magnetic fields are equal when v=c has 
important consequences, as will be discussed later. 
 



The vacuum chamber 真空盒 
 
So far we have discussed a particle in free space. We now need to add the 
vacuum chamber. 
 
Consider a very smooth cylindrical beam pipe. (How smooth does it have to 
be? It has to be so smooth that one small 1-mm discontinuity on the pipe is 
going to be a big deal. In some circumstances, even the very small 1-µm 
roughness on the wall surface can have a significant effect!) For now, let us 
also consider the smooth pipe wall to be perfectly conducting, i.e. no 
resistivity. 
 
The ultrarelativistic beam going down the axis of the pipe, together with its 
electromagnetic field and the vacuum chamber look like this: 
 

   
 
This is a complicated arrangement. Note first that the electromagnetic fields 
are perfectly terminated on the pipe wall. No fields penetrate into the wall 
because it is perfect conductor. The image charge on the wall is exactly 
equal and opposite to that of the beam, and it moves also with v=c in the 
same forward direction. As the beam moves forward, the entire field pattern 
moves with it. In particular, there are no electromagnetic fields left behind 
this pattern. 
 



Now remember what we want to do: We want to examine what effect does 
the electromagnetic field carried by the beam has on the particles in the 
beam. So, let us now consider a particular particle in the beam, the blue 
charge e in the above figure, which of course moves with v=c with the beam. 
We call this particle the “test particle”. This test particle will see an electric 
force eE due to the electric field of the beam. This force is easily seen to 
push e towards the vacuum chamber wall because the test charge e has the 
same sign as the charges of the beam. 
 
But there is also a magnetic force. The magnetic field is in the azimuthal 
direction (right hand rule). The magnetic force is (e/c) v x B. It is easily seen 
that this magnetic force is pointing towards the pipe axis. 
 
We mentioned that when v=c, the magnitude of E and magnitude of B are 
equal. In the ultrarelativistic limit, therefore, the electric and the magnetic 
forces exactly cancel! The particles in the ultraralativistic beam do see 
electric force and magnetic force, but they do not see a net force because 
they exactly cancel each other. The collective electromagnetic fields carried 
by the beam do not influence particle motion. If you think about this for a 
minute, it tells you that there can not be any collective instabilities! 
 
Let us make a conclusion by stating the following theorem 定理: 
There are no collective instabilities if the following conditions are all 
fulfilled: (a) the beam is ultrarelativistic, (b) the vacuum chamber is smooth, 
(c) the vacuum chamber wall is perfectly conducting. 
 
Note that the pipe has to be smooth only in the z-direction. The pipe’s cross 
section in the transverse plane can have any arbitrary shape, and the theorem 
remains valid. 
 



Putting the same theorem in another way, we may say that there are three 
possible ways 三種情況 for a collective instability to occur: 
 (a) the beam is not relativistic enough, 
 (b) the vacuum chamber is not smooth enough,  
 (c) the vacuum chamber is too resistive. 
If any one of these conditions occurs, the exact cancellation of the electric 
and magnetic forces is lost, and the beam can encounter an instability. 
 
In reality, we try to avoid these three conditions as much as possible. In fact, 
we generally do such a good job in the design and the construction of 
accelerators that the electric and magnetic forces generally get to cancel to a 
high accuracy. This cancellation is a key to accelerators. Without it, 
basically no accelerators would work! 萬幸！ 
 
However, the cancellation is never perfect. The vacuum chamber is 
generally made of copper or aluminum, which are good conductors but not 
perfect. There will be many small necessary discontinuities along the 
vacuum chamber pipe, such as beam position monitors, vacuum pumping 
ports, etc. There are also those very big discontinuities known as RF 
cavities. As to the condition of v=c, even the TPS fails to satisfy it 
completely. So the cancellation of electric and magnetic forces are not 
perfect. And that leads to collective instabilities. 
 



Wakefields 尾场due to discontinuities 
 
When a charged particle beam traverses a discontinuity in the conducting 
vacuum chamber, an electromagnetic “wakefield” is generated. An intense 
beam will generate a strong wakefield. When the wakefield is strong 
enough, the beam becomes unstable.  
 
Wakefields are generated by beam-structure interaction:  
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The reason a wakefield is generated when there is a discontinuity is because 
the image charges moving along the pipe now have to move around a corner. 
We all know that when a charge is bent in its trajectory, it radiates. 
Wakefields are really the radiation fields of the image charges when their 
trajectories are bent.  
 
Once you learn that these wakefields are a result of radiation, it is natural to 
ask what frequencies are these radiation? What is the frequency content of 
these wakefields? The answer is that it depends on the details of the beam 
and the detailed geometry of the discontinuity. In general, it covers a very 
wide range, from micron wavelengths to long microwaves. To describe the 
frequency content of these wakefields, we will later introduce a quantity 
called impedance. Impedance is essentially the Fourier transform of 
wakefield. 



 
Wakefield due to resistive wall 
 
When the vacuum chamber is smooth but is resistive, there are also some 
wakefields generated. In the case of an ultrarelativistic point charge q going 
down the axis of a circular pipe with resistive wall, the wakefield looks like: 
 

 



Let us first review Maxwell equations below 電磁學綱要: 
  

  
 

   
 
From Maxwell equations, we learned that 
 - electric field is driven by charge 
 - magnet field is driven by current 
 - electric and magnetic fields are connected by Maxwell equations 
 - charge and current are connected by equation of continuity. 
 
We also learned these properties of a conductor: 

- charges stay on the surface. They are not allowed inside. 
- currents stay near the surface. They do penetrate into the conductor. 

The penetration depth is the skin depth. 
 
For an insulator, 

- there is no current inside 
- but charges are allowed inside 

 



In case of resistive wall, the wakefield is generated by the following physical 
process: When the beam’s image charges flow on the vacuum chamber wall, 
the electric field is terminated by a surface charge on the wall surface, while 
magnetic field is cancelled by a surface current. However, electric and 
magnetic fields behave differently. 
 
We conclude that 

- the electric field carried by the point charge will terminate 
immediately by the image charges on the wall surface. 

- the magnetic field carried by the point charge is mostly cancelled by 
the image current on the wall surface, but this cancellation is not exact 
because the current has penetrated into the wall by a skin depth. 

- as the image current slowly re-surfaces after the point charge has past 
by, this re-surfacing image current drives new magnetic fields. These 
new magnetic fields occur after the point charge has left.  

- the re-surfacing changing magnetic field now drives an electric field 
by Maxwell equation. 

 
So you should now conclude that after the point charge has left, it leaves 
behind it a “wakefield”. For the case of resistive wall, this wakefield is 
mainly a magnetic field contributing to transverse wake force, but there is 
also an electric field contributing to a longitudinal wake force.  



What happens to particle motion when there are wakefields? 
 
Earlier, we made this observation: 
 Higher beam intensity => stronger wakefields  => instability 
We now know there will be wakefields in the vacuum chamber after the 
beam passes by a discontinuity or a resistive wall. But we still need to 
explain how the wakefields affect particle’s motion.  
 
To address the question of beam instability, the particles we are interested in 
are those in the beam. These particles move with v=c together with the 
beam. One such particle was shown as the test particle e in an earlier figure.  
 
As mentioned earlier, it is not the electric force or the magnetic force that are 
important. It is their sum, the net Lorentz force, that is important, and there 
is a strong tendency that the electric force and the magnetic force cancel 
each other. The cancellation is exact for the pancake fields, but the 
cancellation is lost for the wakefields. 
 
This test particle sees a Lorentz force 
 
 F = e (E + v x B /c) 
 
where E and B are the wakefields. Because of the tendency of cancellation, 
the Lorentz force is much simpler quantity than the electric and the magnetic 
forces individually.  
 



The wakefield effect on the test charge comes from the Lorentz force. But 
for this ultrarelativistic beam, the problem is further simplified because we 
are really only interested in the force integrated over some distance, i.e. we 
are interested only in the impulse, 

  
 is a function of the spacing between the test charge and the drive beam z. 

It also depends on (r, θ), the transverse coordinates of the test charge. So we 
have 
   = (z,r,θ).  
 
The quantity (z,r,θ) is a much simpler and more elegant quantity to deal 
with than eE, ev x B/c, or F.  In particular, it satisfies an amazing theorem 
called Panofsky-Wenzel theorem, 
 

    
 

 
 
Is seemed that there is not too much handle on the wakefields because they 
seem to have to depend on all kinds of details such as the geometry of the 
discontinuity, or the properties of the wall material. So it is quite amazing 
that on a very general ground, there is such a theorem like the Panofsky-
Wenzel theorem, which relates the longitudinal and the transverse 
components of . The proof of the theorem is omitted here, but it says that 
the transverse gradient of the longitudinal impulse is equal to the 
longitudinal gradient of the transverse impulse. 
 
Once is calculated when the test particle traverses a discontinuity or a 
section of resistive wall, it receives a net impulse to its momentum as 
calculated here. If these impulses are too large, the subsequent motion of the 
test particle will be in question. 
 



Decomposing wakefields into modes 
 
Even with the Panofsky-Wenzel theorem, these wakefields are still very 
complicated in general. Accelerator physicists then proceed as follows. 
 
The problem to analyze is what is the impulse received by the test charge e 
when it integrates the wakefield left behind by a particle beam -- both the 
test charge and the beam are moving down the pipe ultrarelativistically. To 
do so, they first consider the beam to be a delta-function in z, i.e. it is 
infinitely short in length. If the beam has any finite length, the result they 
obtain with the delta-function beam will serve as a Green’s function, and a 
beam with any general longitudinal distribution can be analyzed simply by 
linear superposition. 
 
The beam they consider now is an infinitely short beam with arbitrary 
transverse distribution. To break down the problem further, they next 
decompose the transverse distribution into “modes”. Any general transverse 
distribution can be decomposed into a summation of transverse modes, the 
mode index is designated by m. They then consider a single transverse mode 
m. A general transverse distribution can be obtained again by superposition 
with a summation over m. 
 



So the problem is now reduced to finding the impulse integrated by a test 
charge that is a distance z behind another larger beam; the beam is infinitely 
short in z, has a transverse m-th moment Im, and is moving along the pipe 
axis. In this configuration, Im is the “driving beam” (driving the wakefields), 
e is the test charge (integrating the wakefields), z is the longitudinal distance 
that e is trailing behind Im, and (r,θ) is the transverse displacement of the test 
charge relative to the pipe axis. The impulse calculated by this configuration 
is going to be used as a Green’s function when we analyze the beam 
instability problem later. 
 

   



Consider a circular vacuum chamber pipe for simpler discussion. The 
wakefields can be decomposed into transverse modes: 
 
          transverse distribution transverse moment 
 m mode of wafefields of the driving beam 
 0 monopole 1 q 
 1 dipole cos θ q <x> 
  skew dipole sin θ q <y> 
 2 quadrupole cos 2θ q <x2-y2> 
  skew quadrupole sin 2θ q <2xy> 
 3 sextupole cos 3θ q <x3-3xy2> 
  skew sextupole sin 3θ q <3x2y-y3> 
 
Higher modes correspond to higher values of mode number m.  
 
For a circular pipe, the m-th multipole wakefield is driven when and only 
when the driving beam has an m-th moment. For example, if the beam is 
transversely displaced from the pipe axis, then it contains an m=1 dipole 
moment. (If the beam is horizontally displaced, it contains a dipole moment. 
When it is vertically displaced, it contains a skew dipole moment.) Each 
moment then drives its corresponding wakefields. A beam with no skew 
quadrupole moment (i.e. a beam with q <2xy>=0), for example, will not 
drive ~ sin 2θ wakefields. A beam with m-th distribution moment Im will 
generate a wakefield in the m-th mode that is proportional to Im. 
 
With mode decomposition, description of wakefields now becomes easier to 
handle. 
 
In most applications, it turns out that we care mostly about the m=0 
monopole mode when discussing longitudinal collective instabilities, and 
mostly about m=1 dipole and skew dipole modes when discussing transverse 
collective instabilities. 
 



Wake functions 
 
Things begin to get complicated. To get a handle of this, we now introduce a 
quantity called “wake functions”. 
 
We mentioned the Panofsky-Wenzel theorem earlier without proof. It turns 
out that the proof of this theorem contains a lot more information than just 
the theorem itself. In particular, let us consider again the configuration when 
a delta-function driving beam with transverse moment Im going down the 
axis of the circular pipe. This beam will generate behind it a wakefield in the 
m-th mode. It can be shown that, for a test charge e following behind this Im 
beam by a distance z and having a transverse displacement of (r, θ), the 
transverse and longitudinal components of the integrated wakefield impulse 
can be written as 
 

   (1) 
 
Here a prime denotes d/dz, Wm(z)  is called the transverse wake function and 
Wm’ (z) the longitudinal wake function. The longitudinal wake function is 
simply the z-derivative of the transverse wake function. 
 
Equations (1) look rather complicated, and we have omitted its derivation, 
but they are also quite amazing and contain a wealth of information. First of 
all, you should be able to check explicitly that the Panofsky-Wenzel theorem 
is obeyed by these expressions. We then note that the fact that is 
proportional to e and Im is straightforward and you would have guessed it. 
On the other hand, one sees that the dependences of  on m, r, and θ have 
all been explicitly solved. And this is done even without you being told 
anything about the geometry of the vacuum chamber discontinuity or the 
chamber wall's resistivity!  
 
 
Homework 1 
Show that Eqs.(1) satisfy Panofsky-Wenzel theorem. 



In Eqs.(1), the only remaining unknown is the wake function Wm(z), which 
depends only on z. Furthermore, the transverse and the longitudinal wake 
potentials involve the same function Wm(z). 
 
So for each vacuum chamber discontinuity, no matter how complicated its 
geometry is, we have now reduced the wakefield problem to the wake 
functions Wm(z). For each discontinuity along the vacuum chamber, we just 
ask the question, “What is the wake function of this discontinuity?” When 
these wake functions are calculated, we will know the impulse each particle 
in the beam receives from the collective wakefields generated by the beam. 
And when that is known, we can analyze the stability of the beam. 
 
As mentioned, for most cases, we are interested only in m=0 for longitudinal 
beam instabilities, and m=1 for transverse instabilities. Therefore, for each 
discontinuity, we just ask for two functions: W0’(z) and W1(z), and we just 
calculate these two functions for most applications. 
 
Why do we not worry about m=0 for transverse instabilities?  

Answer: =0 when m=0 (see the formula for ). So the leading 
transverse contribution comes from m=1. 
 



Table below lists the two moments (first the normal moment and then the 
skew moment) of the driving beam and the associated transverse and 
longitudinal impulses seen by a test charge e with transverse coordinates 
(x,y)  that follows at a distance z behind a beam which possesses an m-th 
moment.  

Table 1 

 
 
 
 
Homework 2 
Table 1 is an important table. Follow the text and convince yourself of the 
results established in the table. 
 



Properties of wake functions 
 
There are many interesting and very general properties of the wake functions: 

 

  
 
The lower curve is of course related to the upper one by taking derivative 
with respect to z. You should check all the properties listed above are 
satisfied by these curves. 
 



As an illustration, let us prove the property Wm’(0-) >0 here. Immediately 
following the beam, we expect to see a longitudinal electric field that retards 
the beam, regardless of vacuum chamber properties. This is because the 
beam must not gain energy as it propagates down the pipe – otherwise we 
can create a perpetual moving machine. This means the quantity jz  must 
be negative, and in a few steps this proves Wm’(0-) >0.  
 
 
Homework 3 
(a) Make sure that you follow the steps in the above proof for Wm’(0-) >0. 
(b) Then show Wm(0-) <0  using the fact that Wm’(0-) >0 and that Wm(z>0) 
=0. 
 
 
There is also the interesting property that Wm’(0), evaluated exactly at z=0, 
is always equal to ½ times the value Wm’(0-) evaluated at z slightly less than 
0. This is customarily referred to as the fundamental theorem of beam 
loading – even though the reason behind it is rather simple and not quite so 
fundamental. 
 
One can also say something about the polarity of the transverse wake forces: 
 

  
 

 
 
Conclusion: wakefields always do damages to short bunches!



Calculation of wakefields 
 
Some analytically calculable examples of wakefields can be found later 
together with their corresponding impedances. For a general situation when 
there are no analytic results, one uses numerical calculations. There are 
several computer codes that calculate either the wakefields or the 
impedances. Some of these codes are commercially available, some are 
developed by individual researchers. 
 
In general, a code that calculates wakefields requires a short driving beam 
that drives the electromagnetic fields in the vacuum chamber. The beam is 
then made to propagate down the beam pipe, the fields calculated, and the 
force on a trailing test particle is integrated (to get the impulse). Such an 
approach is called a time-domain approach.  
 
There are also codes that calculate impedances instead of wakefields. In 
such codes, the driving beam is considered to be infinitely long and is 
sinusoidal with frequency ω, and all wakefields as well as the integrated 
voltage respond to the same frequency. The ratio of this voltage and the 
driving current then yields the impedance at frequency ω. Such an approach 
is called a frequency-domain approach. 
 
The time-domain calculation of the wake functions and the frequency-
domain calculation of the impedances are completely equivalent. They are 
related by Fourier transforms. For example, when a time-domain code is 
used and wake functions calculated, people typically make Fourier 
transforms and print the output of the impedances as a by-product. 
 



Here is one example of a time-domain calculation: 
 

 



 
In a time-domain calculation, the integrated wake impulse is numerically 
calculated for a test charge following a short Gaussian driving bunch. To 
calculate accurately, one should use as short a driving bunch as possible. If 
the driving bunch is not short enough, the short-range contents (or 
equivalently, the high frequency content) of the wakefield will be lost. It is 
difficult to calculate wakefields at short ranges (or equivalently, impedances 
at high frequencies). At the least, the number of mesh points will have to be 
increased sharply, and computing time becomes an issue. 
 



Impedances 阻尼  
 
We talked about frequency content of the wakfields and mentioned that its 
wavelengths cover a wide range from ~1 µm to ~1 m. The quantities that 
characterize the frequency content of the wakefields are the impedances, 
which are nothing but the Fourier transforms of the wake functions, 
 

  
 
Since we have already discussed the wake functions, we consider these 
equations simply the definition of impedances. 
 
Instead of asking about wake functions, an accelerator designer therefore 
could alternatively ask: “What is the impedance of your accelerator?” The 
impedance is the quantity most directly related to the maximum beam 
current that can be accepted by the accelerator.  
 



Properties of impedances 
 

 

 
 



Some expressions of impedances and wake functions 
 
To find the impedance for a given vacuum chamber discontinuity, one needs 
to solve Maxwell equations for the electromagnetic fields produced in the 
vacuum chamber. Over the years, a large arsenal of techniques had been 
developed to calculate the impedances. Most results involve numerically 
solving the associated boundary value problems.  
 
We mentioned that there are 3 ways when wakefields are generated. Three 
cases, each representing one of these 3 ways, that permit analytical 
expressions are given below. A lot more examples can be found in the 
Handbook. 
 
Direct space charge 
    

where Z0=(µ0/ε0)1/2 = 377 Ω is the free-space impedance.  
 
This case is in free space; there is no vacuum chamber, therefore no vacuum 
chamber discontinuity and no resistive wall. So why is there a wakefield and 
impedance? The answer is that the beam is not ultrarelativistic. Indeed, you 
should note that these wakefield and impedances are proportional to 1/γ2. 
For unltrarelativistic beam, they vanish. 
 
Space charge effects are most significant only for low-to-medium energy 
proton or heavy ion accelerators. TPS, for example, will not suffer from 
space charge instability because γ is so large. This impedance is purely 
imaginary. By the sign of its imaginary part, we call this impedance 
“capacitive”. 
 



Resistive wall 
 
The second way to produce wakefield is when the vacuum chamber wall is 
resistive: 
 

 
 
The impedance is proportional to 1-i,  i.e. it is “half resistive and half 
inductive”. 
 



Slowly varying wall boundaries 
 
The third way is when the vacuum chamber has discontinuities, even though 
perfectly conducting. Consider a case when the vacuum chamber wall varies 
along the accelerator slowly, a perturbation technique can be used to 
calculate the impedances. Specify the wall variation by h(z) (1-dimensional 
cylindrically symmetric bump). At low frequencies k=ω/c < 1/(bump length 
or width), the impedance is purely inductive, 

   
and k=ω/c.  
 
 
Homework 4 

Calculate  for 

 
 
When the boundary varies rapidly, this impedance formula breaks down, and 
most likely numerical calculation has to be applied. 
 



Resonator model 
 
The longitudinal impedance can often be modeled by an equivalent parallel 
LRC resonator circuit, 

  

   
  
or 

   
 
where is the quality factor and  is the resonant 
frequency. The width (half width at half maximum) of the resonance peak of  
Re  is about  if Q>>1. A sharply peaked impedance 
has Q>>1, while a broad-band impedance has Q~1. 
 

   



 
The corresponding wake function (Fourier transform) is 
 

  

         
 
 At low frequencies ω<<ωR,  -iωL is inductive. For ω>>ωR, we 
have i/ωC, which is capacitive. Around the resonant frequency 

ω~ωR, the impedance  RS is mostly resistive.  
 
The same resonator also contributes to a transverse impedance, 

 

 
 
The corresponding transverse wake function is  

  
 



We mentioned earlier that the RF cavities often represent the largest 
discontinuities, and therefore sometimes the largest source of impedance. 
The accelerating mode (the fundamental mode) of an RF cavity typically has 
a Q-value ~104. This means the electromagnetic fields trapped in the 
fundamental mode of the cavity will make ~104 oscillations before they 
decay significantly. For most discontinuities on the vacuum chamber walls, 
however, the wakefields decay much faster. Many of them in fact can be 
modeled as a resonator model with Q~1. 
 
For a low-Q object of the size of the order of the beam pipe radius b, a 
broad-band resonator model of its impedance would have the resonator 
parameters: 
 RS = Z0//2π  ~  60 Ω 
 Q = 1 
 ωR = c/b 
  



The quantity Z/n 
 
In some accelerators (most likely the earlier accelerators, such as an older 
synchrotron), beam bunches are long. For example, some have bunches 
longer than 1m, or at least several cm. In these cases, when the bunches are 
longer than the vacuum chamber pipe radius, it turns out that often it is the 
lower frequencies of the wakefields that dominate the collective instabilities.  
 
We mentioned before that for longitudinal instabilities, it is the m=0 effects 

that dominates. This means we must pay most attention to .   
 

From the properties of impedances given above, we know that (ω=0) =0. 

For small ω,  this  means Im( ) (ω) is proportional to ω. For older 
synchrotrons, the instability is therefore specified by the low-frequency 

slope of Im( ) (ω), i.e. we need a quantity Im( ) (ω) / ω at ω → 0. Such 
a quantity is called Z/n. We therefore ask the question, ”what is the value of 
Z/n of your synchrotron?” By Z/n, we mean: 

 Z/n = ( the low-frequency slope Im( ) (ω) / ω  )  x  ω0 
 
where ω0 is just the revolution frequency of the synchrotron.  
 
Note that this Z/n quantity is a single-valued quantity, in units of Ohms. In 
comparison, the impedance is a much more complicated quantity because it 
is an entire function of frequency. By using Z/n, the entire problem of beam 
instability becomes a simple question of how large is the value of a single 
quantity Z/n. It is clear that this single value Z/n will not completely 
describe the instabilities, and it represents an oversimplification of the 
problem. But for older synchrotrons, it turns out not too bad an 
oversimplification.  
 



It is an impressive accomplishment of the accelerator physicists to manage 
to zero in on a single key quantity to address such a complex physical 
problem. 抽丝剥茧  Their hard work 辛勤的耕耘 is summarized again in 
the following framework 別忘了整體的大架構: 
 
 A seemingly impossibly complex electromagnetic problem with 3-

dimensional boundaries 
 
 Realizing that for ultrarelativistic beams, it is only the impulse that 

counts 
 
 Panofsky-Wenzel theorem 
 
 Wake functions Wm(z) 
 
 Impedances Zm(ω) 
 
 Z/n 
 
The fact that this drastic simplification is even possible is a very lucky 
blessing from Mother Nature.  再一次的萬幸！



Careless limit of Z/n 
 
Consider a cavity structure of the size of the pipe radius b on the vacuum 
chamber. Its impedance can be represented as a broad-band resonator model. 
In terms of Z/n, it will contribute 
 
  Z/n per cavity ~  (Z0/2π) (ω0/ωR)           (2) 
 
where ωR = c/b and ω0=c/R and 2πR is circumference of the circular 
accelerator.  
 
If one now imagines a carelessly built accelerator in which the vacuum 
chamber is filled with all sorts of cavities and discontinuities of 
approximately the same size as the pipe radius, the total Z/n around the 
circumference is  
 
 (Z/n total) ~ (Z/n per cavity) ncav  

 
where ncav = 2πR/2b is the total number of cavities around the circumference. 
This carelessly designed accelerator has 
 
 (Z/n total) ~ (Z0/2) ~ 160 Ω 
 
This is the careless limit of impedance. You cannot do worse than that. Note 
that this limit is a fundamental constant, independent of the accelerator size 
R and the pipe size b. 
  
In case a fraction ~f of the accelerator is filled with cavities, one has  
 
 Z/n ~  f  X  (160 Ω) 
 
In a typical modern accelerator, attempts are made to make Z/n less than 1 Ω 
or so. This means the vacuum chamber has to be sufficiently smooth to 
suppress the impedance by a factor of a few hundred compared with the 
careless limit. 
 
Homework 5 
Derive Eq.(2) for Z/n of a broad band resonator.



Impedance at high frequencies 
 
For the more modern accelerators, however, particularly when the beam 
bunches gets shorter and peak intensity gets higher, the single value Z/n no 
longer provides a complete picture. The collective instability problem 
becomes more difficult. The single value of Z/n suffices for older 
synchrotrons, but not for these modern applications. For these applications, 
we need not only Z/n but also the entire impedance functions, particularly at 
high frequencies. Unfortunately, high frequency is also where impedance is 
most difficult to measure or to calculate.  
 
The research on impedances 一些研究的方向 involves bench measurement 
of impedance components (electronics, rf techniques), analysis 
(electromagnetism problems with boundary conditions), computation 
physics (3-dimensional boundary value problems with very fine meshes, 
inverting 106 x 106 matrices!). High power computing is one important 
resource needed.  
 



 
3. Collective Instabilities 

 
We described wakefields and impedances. We still need to describe how to 
use these quantities to calculate beam instabilities. For example: Given the 
impedance, is the beam stable? If it is unstable, what happens to the beam? 
What is the instability growth rate? 
 
As mentioned before, there are a large number of instability mechanisms. 
We will briefly describe three of them below: 

o Parasitic heating 
o Robinson instability 
o Strong head-tail instability 

 



Parasitic heating 
 
When a beam bunch of charge q and line density λ(t) traverses an impedance 
region in the vacuum chamber, it suffers some energy loss to the impedance. 
Let the longitudinal impedance be (ω). This parasitic energy loss 
(sometimes also called HOM heating, HOM means “higher order modes”) 
by the beam bunch is given by 
 

  
 
where  is called the loss factor, 
 

  
 
For a Gaussian bunch, we have 

 
 
Only the real part (the resistive part) of the impedance contributes to the 
parasitic loss. Inductive impedances and the space charge or the slowly 
varying wall impedances do not introduce a net energy loss to the beam. 
However, this does not mean that individual particles do not change their 
energies. It only means that the energy loss by particles at the head of the 
bunch is recovered by particles in the tail of the bunch, so that there are only 
energy transfers but no net energy loss of the entire beam bunch. 
 
In general, it happens that this beam energy loss becomes large for short 
bunches. Parasitic heating is mainly a problem for high intensity, and short, 
bunches. Substitute in the impedance of a resistive wall, for example, gives a 
formula 
 

  
 



Parasitic loss gives rise to heating of the vacuum chamber wall where there 
are impedances. For example, in high intensity electron storage rings, the 
beam position monitors or bellows can easily heat up and get burned. This is 
especially serious when short bunches are required for the applications. 
 
Most of the parasitic loss occurs as the beam traverses a discontinuous 
structure in the vacuum chamber pipe. Part of the wakefield gets trapped by 
the structure if the structure is cavity-like and if the wakefield frequency is 
below the cutoff frequency of the pipe. This trapped field energy is 
eventually deposited as heat on the cavity walls. The rest of the wakefield, 
with frequency higher than the cutoff frequency, propagates down the pipe 
and eventually deposits its energy on lossy material elsewhere in the vacuum 
chamber, much like heating a potato in a microwave  oven.  
 
The parasitic energy lost by the beam goes into wakefields. Typically, only a 
small fraction of the particle energy is depleted to produce the wakefields, 
and most of the energy stored in the wakefields ends up as heat on the 
vacuum chamber walls. But under unfavorable conditions, a small portion of 
the wakefield energy can be transferred systematically back to beam motion, 
causing beam instabilities.  The parasitic loss, therefore, is ultimately 
responsible for the various collective beam instabilities. How the wakefields 
affect the beam dynamics and what are the mechanisms of the various 
collective beam instabilities are subjects to which we will have to study. The 
parasitic energy loss itself, of course, will have to be supplied back to the 
beam by an RF accelerating voltage. 
 



Robinson instability 
 
Robinson instability is one of the most basic instability mechanisms. It is a 
longitudinal instability that occurs in circular accelerators. The main 
contributor to this instability is the longitudinal impedance due to the RF 
accelerating cavities. These cavities are tuned to have a resonant frequency 
ωR for its fundamental accelerating mode. This mode is where the klystrons 
feed into, but at the same time, it is also a big source of wakefield and 
impedance. Since we must have these modes in order to accelerate the beam, 
we must accept the existence of these very big wakefield and impedance and 
try to live with them. 
 
In wakefield language, the fundamental mode is one of the m=0 modes with 
its electric field mainly in the longitudinal direction. In fact, it is the biggest 
m=0 mode in the entire accelerator. The real part of this impedance peaks at 
ωR with a narrow width. The width is approximately given by ΔωR/ωR ≈ 
±1/Q, where Q is the Q-value of the RF cavity’s accelerating mode. 
Typically, Q ~104  (or 109 for superconducting cavities). So this impedance 
is sharply peaked. 
 
By design, ωR is very close to an integer multiple of the revolution 
frequency ω0 of the beam. This necessarily means that the wake field excited 
by the beam in the cavities contains a major frequency component near ωR ≈ 

hω0 or equivalently, the impedance  has a sharp peak at ωR ≈ hω0, where 
h is an integer called the harmonic number. 
 
As we will soon show, the exact value of ωR relative to hω0 is of critical 
importance for the stability of the beam. Above the transition energy, the 
beam will be unstable if ωR is slightly above hω0 and stable if slightly below.  
This instability mechanism was first analyzed by Robinson in 1964. 
 



Kenneth Robinson (1925-1979) 

 
 
To simplify the physical picture, let us consider a beam that is just a big 
charge Ne. It has no internal structures, and is just a big point charge. This of 
course is an over-simplification of a true beam bunch because internal 
structures can be important. Some instabilities – in fact, many instabilities -- 
involves internal instabilities. So this over-simplified picture will miss all 
those instabilities. However, this picture does allow descriptions of some 
important instabilities, for example the Robinson instability, and we will 
adopt this picture here. This picture is called a one-macroparticle model of 
the beam.  
 
The advantage of this one-macroparticle model is that it allows simple 
analytical results. One can extend this idea and create a few two-
macroparticle models. They also describe other instabilities, particularly 
those for which internal structures do play a role, and allow analytical results. 
But we will not address these models yet. 
 



Since Robinson instability is a longitudinal effect, we now consider the 
longitudinal motion of this one-particle beam. Let zn be the longitudinal 
displacement of the beam at the accelerating RF cavity in the n-th revolution, 
measured relative to the center of an idealized bunch unaffected by 
wakefields.  The rate of change of zn is related to the relative energy error δn 
= ΔE/E of the beam in the same n-th revolution by (李世元) 

  
where η is the slippage factor, C is the accelerator circumference.  A 
positive zn means the beam arrives the RF cavity earlier than the idealized 
bunch.  
 
The energy error also changes with time. Its equation of motion is 

  
where νs is the synchrotron tune.  
 
If we combine these two equations, we get a simple harmonic oscillation for 
both zn and δn, 

   0 

 
The oscillation has a phase advance of 2πνs per revolution. This oscillation 
is just the synchrotron oscillation of the macroparticle beam. Typically, νs  

<< 1, i.e., synchrotron oscillation is slow and the beam does not execute 
much synchrotron motion during the time it completes one revolution. 
 



But the above equation is valid only when the beam has a vanishing intensity. 
Otherwise, the pure simple harmonic oscillation is perturbed. For an intense 
beam, the energy variation also depends on the wake field generated by the 
beam. The longitudinal wakefield affects the energy equation of motion. The 
dδn/dn equation then acquires an additional term, 
 

  
 
where W0' is the longitudinal wake function accumulated over one turn of 
the accelerator.  The summation over k is over the wakefields left behind by 
the beam from all revolutions prior to the n-th. The argument of the wake 
function is the longitudinal separation of beam positions between the n-th 
and the k-th revolutions. 
 
The equation of motion now becomes 

  
We need now to solve this equation for zn as a function of turn number n. To 
do so, we let zn be written as 
 

    
 

where T0=C/c=2π/ω0 is the beam revolution period, and Ω is the mode 
frequency of the beam oscillation and is a key quantity yet to be determined.   

 
Substituting into the equation of motion, we find an algebraic equation for Ω, 
 

   
 
where ωs= νsω0 is the synchrotron oscillation frequency. 
 



Now the wake function can be expressed in terms of the longitudinal 
impedance by a Fourier transform.  This yields 

 

 
 

Given the impedance, this equation can in principle be solved for Ω. Note 
that Ω appears on both sides of the equation. Here, however, we will take a 
perturbative approach and assume Ω does not deviate much from ωs for 
modest beam intensities.  We thus replace Ω by ωs on the right hand side of 
the equation. Quantity Ω is then easily solved. 
 
In general, Ω is complex.  The real part of Ω is the perturbed synchrotron 
oscillation frequency of the collective beam motion, and the imaginary part 
gives the growth rate (or damping rate if negative) of the motion.  We then 
obtain a mode frequency shift, 
 

 
 
and an instability growth rate, 
 

 
 
It is the imaginary part of the impedance that contributes to the collective 
frequency shift and the real part that contributes to the instability growth rate. 
 
Note that when we measure the synchrotron frequency in a real operation, 
the frequency we measure is not ωs, but the shifted mode frequency Ω. 
 



So far our results holds for arbitrary impedance. We now consider the 
resonator impedance for the fundamental cavity mode. The only significant 
contributions to the growth rate come from two terms in the summation, 
namely p=±h because the impedance is sharply peaked there. This gives 
 

  
 
Beam stability requires τ -1 <0.  That is, the real part of the impedance must 
be lower at frequency hω0+ωs than at frequency hω0+ωs if η>0 (above 
transition), and the other way around if η<0 (below transition).  This 
condition gives the important Robinson stability criterion that, above 
transition, the resonant frequency ωR of the fundamental cavity mode should 
be slightly detuned downwards from an exact integral multiple of ω0.  Below 
transition, stability requires ωR be slightly higher than hω0. 
 

 
 



When τ -1 <0, the Robinson mechanism leads to exponential damping of any 
synchrotron oscillations of the beam. When τ -1 <0, the beam is unstable 
because any accidental small synchrotron oscillation of the beam would 
grow exponentially with the instability growth rate, eventually leading to the 
loss of the beam.  
 
Robinson damping (or antidamping) can be rather strong. When the 
Robinson criterion is met, the synchrotron oscillation of the beam is 
“Robinson damped,” and this damping will help stabilizing the beam against 
similar instabilities due to other impedance sources.  
 
Physically, Robinson instability comes from the fact that the revolution 
frequency of an off-momentum beam is not given by ω0 but by ω0(1- ηδ). 
To illustrate the physical origin of the Robinson instability mechanism, 
consider a beam executing synchrotron oscillation above transition. Due to 
the energy error of the beam, the impedance samples the beam signal at a 
frequency slightly below hω0 if δ>0, and slightly above hω0 if δ<0. In order 
to damp this synchrotron oscillation of the beam, we need to let the beam 
lose energy when δ>0 and gain energy when δ>0. This can be achieved by 
having an impedance that decreases with increasing frequency in the 
neighborhood of hω0. The Robinson stability criterion then follows. 
  



Strong head-tail instability 
 
The next topic is to introduce another instability mechanism, this time a 
transverse instability, called strong head-tail instability, and it is to be 
discussed using a two-macroparticle model. But here we will not elaborate 
on the analysis of this instability. Instead, we just mention that this 
transverse instability was first observed and analyzed at PEP. When intensity 
is above a certain threshold, the beam is unstable. Below it, the beam is 
stable but its motion is perturbed as seen below: 

 
 
You see here also that the observation and the analysis using a two-particle 
model agree rather well. 
 



The strong head-tail instability was also seen at LEP using a streak camera: 
 

   
 
 
There are also many other instability mechanisms. Still another important 
topic would be to discuss an effect called potential well distortion, or 
potential well bunch lengthening. We will not cover all of them. 
 



Further readings 
 
A good fraction of the notes can be found in: 

Handbook of Accelerator Physics and Engineering, ed. A. Chao and M. 
Tigner, World Scientific, 3rd print (2006). 

 
For discussions emphasizing the physics principles, one may consult:  

Physics of Collective Beam Instabilities in High Energy Accelerators, A. 
Chao, Wiley (1993). 
(welcome to download:  
http://www.slac.stanford.edu/~achao/wileybook.html) 

or  
Physics of Intensity Dependent Beam Instabilities, K.Y. Ng, World 
Scientific (2006). 

 
For a much more extensive discussion on impedances, one may consult: 

Impedances and Wakes in High-Energy Particle Accelerators, B. Zotter 
and S. Kheifets, World Scientific (1997). 

 


