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1. Introduction
Design of an accelerator JIZE S HYERE

To design an accelerator, one first considers the motion of a single charged
particle in the environment of magnets and RF cavities. The motion of this
single particle in this environment must be stable.

For example, in a circular accelerator, the particle must stay inside of the
accelerator vacuum chamber for many many revolutions, typically >>10"
revolutions --- and much more than that of the lifetime of earth around the
sun!

This is of course not an easy task. Accelerator physicists design accelerators
with three basic elements:

Element Function Field Focusing

Dipoles Guide particle trajectory Magnetic weak focusing in x

Quadrupoles Confine particle motion near Magnetic X,y
the design trajectory

RF cavities  Keep particle energy near the Electric z
design energy

All these are just to make sure that single-particle motion is stable. With
these three elements arranged, the basic layout of an accelerator is
determined.

Having provided a design trajectory, and made sure that there are focusing in
x,y, and z, there seems to be nothing left to do. But that is not true. We still
have to examine the stability of the beam particles in much more detail.



Single-particle stability Bk 78 & 1

This is one very important area of accelerator physics, i.e. single-particle
nonlinear dynamics (ZZtH7T - ZPEFIK).

Multi-particle stability 2%k + & & &

But there is a second significant part of accelerator physics. It is called
multi-particle collective beam instability effects, sometimes also called
collective beam instabilities, coherent beam instabilities, beam instabilities,

or simply instabilities. F iy T H -

After an accelerator 1s built, it is clear that the users will continue to ask for
stronger and stronger beams. However, when the beam intensity is
increased, the beam is bound to become unstable at some point. Beyond that
point, the beam becomes unstable. So the first instinct is to operate the
accelerator below that instability limit and never to exceed it.

But that is not the right way to think. What we actually do is to try to
understand this instability mechanism (accelerator physics!), and cure it.
After curing it, the beam intensity can be increased again.

But what happens is that then another instability mechanism will take over,
limiting the beam intensity at some higher limit. We then understand and
cure it again. This process repeats. So the net beam intensity ends up
showing a behavior like this:

beam intensity

design goal (for funding
agencies only)

— year of
operation



Note that collective instabilities are bound to occur. There is no way that an
accelerator does not need to address questions on collective instabilities.
This is because we will always try to push the beam intensity to its
maximum. And at that maximum, by definition, there is a limiting
instability. The study of collective instabilities cannot be avoided. £Ef5 1~ &
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A side remark to be made here: Building an accelerator is not building a
bridge &R ES N & e G PHES. After a bridge is built, the job is done. The
bridge then stays there the same way as it was built until one day it is
demolished. In contrast, an accelerator is a living object. After it is built, an
accelerator is constantly being improved. The concept of “design goal” of an
accelerator applies only for the government funding agencies. A real
accelerator always continues to grow, reaching the original design goal, and
exceeding it. The “design goal” means nothing to an accelerator physicist, as
illustrated in the above figure. An accelerator physicist must keep the right
mind-set that his/her job is not done simply because an accelerator has been
built or when its design goal has been met — an accelerator is not a bridge.



Note also that there is not just one instability. There are actually many types
of instabilities. The beam can be stable or unstable depending on which
instability mechanism one is talking about. For some instability
mechanisms, the beam is always unstable but is fortunately stabilized by
some stabilizing mechanisms. For some other instability mechanisms, the
beam is stable below a certain intensity threshold, while unstable above it.
Each instability occurs under some different conditions and at different
beam intensities. But there are many of them, occurring at higher and higher
intensities. So one would actually encounter a whole list of all kinds of
possible instabilities. After encountering one instability mechanism and
curing it, you will meet the next one.

Over the years, accelerator physicists have observed, explained, and
(mostly) cured several intricate instability mechanisms:

negative mass instability 1959

resistive wall instability 1960

beam break up instability 1966

head-tail instability 1969

microwave instability 1969

beam-beam limit in colliders 1971
potential well distortion 1971

anomalous bunch lengthening 1974
transverse mode coupling instability 1980
coherent synchrotron radiation instability 1990
sawtooth instability 1993

electron beam-ion instability 1996
electron cloud instability 1997
microbunching instability 2005



Roughly, that is one instability mechanism every ~3 years. An example of beam
break-up instability in an electron linac is shown below:

When the beam is well steered down the long 3-km linac at SLAC, the beam
profile at the end looks nicely packed. When the beam trajectory is slightly mis-
steered, the beam tail gets perturbed by the “wakefields” generated by the beam
head. This instability, once understood, was cured by precision alignment of the
linac, plus several trajectory control feedback systems.
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History shows new instabilities are discovered as we overcome the older
instabilities and push for higher and higher beam intensities. The latest are found in
the most advanced accelerators, for example in factory-class collider storage rings
and free electron laser linear accelerators. The process is still continuing as new
accelerator concepts are invented, and as older accelerator concepts were pushed
for higher performances.



2. Wakefields and Impedances
A charged particle always carries electromagnetic fields

Collective instabilities mostly come from an intense beam interacting with
its vacuum chamber environment in an accelerator. How does the interaction
take place? One first has to know that each charged particle always is
attached with it some electric field lines. You can distort these field lines but
you can never cut them loose from the charge under any circumstances. This
is called Gauss’s law. (*) & PEN ST E &

(*) Gauss law is an amazing law. Mathematically, it reads V*E =p/s.
Physically it reads: Electric field lines are absolutely attached to the

charges, no matter how violently you shake the particle trying to shake
off its field lines.

If the charge is stationary and if it is in a free space, its field lines radiate
radially outwards isotropically, as in fig.(a) below. For a moving charge, we
see fig.(b). When v approaches c, the field lines get contracted into a thin
“pancake”. The pancake is attached to the particle and moves with it with
velocity v. When we take the ultrarelativistic limit v=c, then the pancake
reduces to infinitely thin sheet, as shown in fig.(c). All the electric fields stay
in an infinitely thin sheet. This contraction is the result of theory of
relativity.
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Since in accelerators, the particles typically move with speed very close to c,
we will now think of the picture in (¢). In the TPS (Taiwan Photon Source),

for example, electrons will move with v=0.99999999 c.

In addition to the electric field as shown in the above figure, when the
particle is moving, it also generates a magnetic field. This magnetic field has
the same distribution as the electric field, i.e. it contracts to a thin pancake
when the particle’s velocity approaches ¢, and into an infinitely thin sheet
when v=c. Direction of the electric field is radial; direction of the magnetic
field is azimuthal (right-hand rule).

However, the magnetic field differs from the electric field on one important
point. When v=0 as in fig.(a) above, there is electric field, but no magnetic
field. When v increases, the magnitude of the magnetic field increases, but
still weaker than the electric field. Only when v=c, the magnetic field
increases to become the same magnitude as the electric field. The fact that
the magnitudes of the electric and magnetic fields are equal when v=c has
important consequences, as will be discussed later.



The vacuum chamber EZZ &

So far we have discussed a particle in free space. We now need to add the
vacuum chamber.

Consider a very smooth cylindrical beam pipe. (How smooth does it have to
be? It has to be so smooth that one small 1-mm discontinuity on the pipe is
going to be a big deal. In some circumstances, even the very small 1-um
roughness on the wall surface can have a significant effect!) For now, let us
also consider the smooth pipe wall to be perfectly conducting, i.e. no
resistivity.

The ultrarelativistic beam going down the axis of the pipe, together with its
electromagnetic field and the vacuum chamber look like this:

image
i
test charge e V=0

T V=l — - —

This is a complicated arrangement. Note first that the electromagnetic fields
are perfectly terminated on the pipe wall. No fields penetrate into the wall
because it is perfect conductor. The image charge on the wall is exactly
equal and opposite to that of the beam, and it moves also with v=c in the
same forward direction. As the beam moves forward, the entire field pattern
moves with it. In particular, there are no electromagnetic fields left behind
this pattern.



Now remember what we want to do: We want to examine what effect does
the electromagnetic field carried by the beam has on the particles in the
beam. So, let us now consider a particular particle in the beam, the blue
charge e in the above figure, which of course moves with v=c with the beam.
We call this particle the “test particle”. This test particle will see an electric
force eE due to the electric field of the beam. This force is easily seen to
push e towards the vacuum chamber wall because the test charge e has the
same sign as the charges of the beam.

But there is also a magnetic force. The magnetic field is in the azimuthal
direction (right hand rule). The magnetic force is (e/c) v x B. It is easily seen
that this magnetic force is pointing towards the pipe axis.

We mentioned that when v=c, the magnitude of E and magnitude of B are
equal. In the ultrarelativistic limit, therefore, the electric and the magnetic
forces exactly cancel! The particles in the ultraralativistic beam do see
electric force and magnetic force, but they do not see a net force because
they exactly cancel each other. The collective electromagnetic fields carried
by the beam do not influence particle motion. If you think about this for a
minute, it tells you that there can not be any collective instabilities!

Let us make a conclusion by stating the following theorem g ¥:

There are no collective instabilities if the following conditions are all
fulfilled: (a) the beam is ultrarelativistic, (b) the vacuum chamber is smooth,
(c¢) the vacuum chamber wall is perfectly conducting.

Note that the pipe has to be smooth only in the z-direction. The pipe’s cross
section in the transverse plane can have any arbitrary shape, and the theorem
remains valid.



Putting the same theorem in another way, we may say that there are three
possible ways —f# {55 for a collective instability to occur:

(a) the beam is not relativistic enough,

(b) the vacuum chamber is not smooth enough,

(c) the vacuum chamber is too resistive.
If any one of these conditions occurs, the exact cancellation of the electric
and magnetic forces is lost, and the beam can encounter an instability.

In reality, we try to avoid these three conditions as much as possible. In fact,
we generally do such a good job in the design and the construction of
accelerators that the electric and magnetic forces generally get to cancel to a
high accuracy. This cancellation is a key to accelerators. Without it,
basically no accelerators would work! & =2 |

However, the cancellation is never perfect. The vacuum chamber is
generally made of copper or aluminum, which are good conductors but not
perfect. There will be many small necessary discontinuities along the
vacuum chamber pipe, such as beam position monitors, vacuum pumping
ports, etc. There are also those very big discontinuities known as RF
cavities. As to the condition of v=c, even the TPS fails to satisfy it
completely. So the cancellation of electric and magnetic forces are not
perfect. And that leads to collective instabilities.



Wakefields & 3% due to discontinuities

When a charged particle beam traverses a discontinuity in the conducting
vacuum chamber, an electromagnetic “wakefield” is generated. An intense
beam will generate a strong wakefield. When the wakefield is strong
enough, the beam becomes unstable.

Wakefields are generated by beam-structure interaction:

Smooth Pipe Pipe with Structure
=> No Wakefields => Wakefields
< —
(a) (b)

The reason a wakefield is generated when there is a discontinuity is because
the image charges moving along the pipe now have to move around a corner.
We all know that when a charge is bent in its trajectory, it radiates.
Wakefields are really the radiation fields of the image charges when their
trajectories are bent.

Once you learn that these wakefields are a result of radiation, it is natural to
ask what frequencies are these radiation? What is the frequency content of
these wakefields? The answer is that it depends on the details of the beam
and the detailed geometry of the discontinuity. In general, it covers a very
wide range, from micron wavelengths to long microwaves. To describe the
frequency content of these wakefields, we will later introduce a quantity

called impedance. Impedance is essentially the Fourier transform of
wakefield.



Wakefield due to resistive wall
When the vacuum chamber is smooth but is resistive, there are also some

wakefields generated. In the case of an ultrarelativistic point charge q going
down the axis of a circular pipe with resistive wall, the wakefield looks like:
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Figure 2.3. Wake electric field lines in o resistive woll pipe generated by o point charge q. The
field pattern shows oscillatory behavior in the region |z] < 5(2x)"/3b (or |z] < 0.35 mm for on

aluminum pipe with b =5 cm). The field line density to the left of the dashed line has been
magnified by a foctor of 40. (Courtesy Karl Bane, 1991.)




Let us first review Maxwell equations below & fij5E2 4] S

equaton of - -
P, © y continuity » J, K
dnving drving
Y
»> Maxwell -
E e— equatons B

Definition of metal: p=0, J =oE
Definition of insulator: J =10, p= €V -E

From Maxwell equations, we learned that
- electric field is driven by charge
- magnet field is driven by current
- electric and magnetic fields are connected by Maxwell equations
- charge and current are connected by equation of continuity.

We also learned these properties of a conductor:
- charges stay on the surface. They are not allowed inside.

- currents stay near the surface. They do penetrate into the conductor.
The penetration depth is the skin depth.

For an insulator,
- there is no current inside
- but charges are allowed inside



In case of resistive wall, the wakefield is generated by the following physical
process: When the beam’s image charges flow on the vacuum chamber wall,
the electric field is terminated by a surface charge on the wall surface, while
magnetic field is cancelled by a surface current. However, electric and
magnetic fields behave differently.

We conclude that

- the electric field carried by the point charge will terminate
immediately by the image charges on the wall surface.

- the magnetic field carried by the point charge is mostly cancelled by
the image current on the wall surface, but this cancellation is not exact
because the current has penetrated into the wall by a skin depth.

- as the image current slowly re-surfaces after the point charge has past
by, this re-surfacing image current drives new magnetic fields. These
new magnetic fields occur affer the point charge has left.

- the re-surfacing changing magnetic field now drives an electric field
by Maxwell equation.

So you should now conclude that after the point charge has left, it leaves
behind it a “wakefield”. For the case of resistive wall, this wakefield is
mainly a magnetic field contributing to transverse wake force, but there is
also an electric field contributing to a longitudinal wake force.



What happens to particle motion when there are wakefields?

Earlier, we made this observation:

Higher beam intensity => stronger wakefields => instability
We now know there will be wakefields in the vacuum chamber after the
beam passes by a discontinuity or a resistive wall. But we still need to
explain how the wakefields affect particle’s motion.

To address the question of beam instability, the particles we are interested in
are those in the beam. These particles move with v=c together with the
beam. One such particle was shown as the test particle e in an earlier figure.

As mentioned earlier, it is not the electric force or the magnetic force that are
important. It is their sum, the net Lorentz force, that is important, and there
is a strong tendency that the electric force and the magnetic force cancel
each other. The cancellation is exact for the pancake fields, but the
cancellation is lost for the wakefields.

This test particle sees a Lorentz force
F=e(E+vxBlc)
where E and B are the wakefields. Because of the tendency of cancellation,

the Lorentz force is much simpler quantity than the electric and the magnetic
forces individually.



The wakefield effect on the test charge comes from the Lorentz force. But
for this ultrarelativistic beam, the problem is further simplified because we
are really only interested in the force integrated over some distance, i.e. we
are interested only in the impulse,

e - »
F = f dsF
—

F is a function of the spacing between the test charge and the drive beam z.
It also depends on (r, 0), the transverse coordinates of the test charge. So we
have

F = F(z1,0).

The quantity F (z,1,0) is a much simpler and more elegant quantity to deal

with than eE, ev x B/c, or F. In particular, it satisfies an amazing theorem
called Panofsky-Wenzel theorem,

VLT" = f.L

¥

<

Here || denotes longitudinal and L denotes transverse components.

Is seemed that there is not too much handle on the wakefields because they
seem to have to depend on all kinds of details such as the geometry of the
discontinuity, or the properties of the wall material. So it is quite amazing
that on a very general ground, there is such a theorem like the Panofsky-
Wenzel theorem, which relates the longitudinal and the transverse

components of F . The proof of the theorem is omitted here, but it says that
the transverse gradient of the longitudinal impulse is equal to the
longitudinal gradient of the transverse impulse.

Once F is calculated when the test particle traverses a discontinuity or a
section of resistive wall, it receives a net impulse to its momentum as
calculated here. If these impulses are too large, the subsequent motion of the
test particle will be in question.



Decomposing wakefields into modes

Even with the Panofsky-Wenzel theorem, these wakefields are still very
complicated in general. Accelerator physicists then proceed as follows.

The problem to analyze is what is the impulse received by the test charge e
when it integrates the waketfield left behind by a particle beam -- both the
test charge and the beam are moving down the pipe ultrarelativistically. To
do so, they first consider the beam to be a delta-function in z, i.e. it is
infinitely short in length. If the beam has any finite length, the result they
obtain with the delta-function beam will serve as a Green’s function, and a
beam with any general longitudinal distribution can be analyzed simply by
linear superposition.

The beam they consider now is an infinitely short beam with arbitrary
transverse distribution. To break down the problem further, they next
decompose the transverse distribution into “modes”. Any general transverse
distribution can be decomposed into a summation of transverse modes, the
mode index is designated by m. They then consider a single transverse mode
m. A general transverse distribution can be obtained again by superposition
with a summation over m.



So the problem is now reduced to finding the impulse integrated by a test
charge that is a distance z behind another larger beam; the beam is infinitely
short in z, has a transverse m-th moment I, and is moving along the pipe
axis. In this configuration, I, is the “driving beam” (driving the wakefields),
e is the test charge (integrating the wakefields), z is the longitudinal distance
that e is trailing behind I, and (r,0) is the transverse displacement of the test
charge relative to the pipe axis. The impulse calculated by this configuration
is going to be used as a Green’s function when we analyze the beam
instability problem later.




Consider a circular vacuum chamber pipe for simpler discussion. The
wakefields can be decomposed into transverse modes:

transverse distribution transverse moment

m _ mode of wafefields of the driving beam
0  monopole 1 q
1 dipole cos 0 q <x>
skew dipole sin 0 q <y>
2 quadrupole cos 26 q <x’-y>>
skew quadrupole sin 20 q <2xy>
3 sextupole cos 30 q <x’-3xy>
skew sextupole sin 30 q <3x°y-y>

Higher modes correspond to higher values of mode number m.

For a circular pipe, the m-th multipole wakefield is driven when and only
when the driving beam has an m-th moment. For example, if the beam is
transversely displaced from the pipe axis, then it contains an m=1 dipole
moment. (If the beam is horizontally displaced, it contains a dipole moment.
When it is vertically displaced, it contains a skew dipole moment.) Each
moment then drives its corresponding wakefields. A beam with no skew
quadrupole moment (i.e. a beam with q <2xy>=0), for example, will not
drive ~ sin 20 wakefields. A beam with m-th distribution moment I, will
generate a wakefield in the m-th mode that is proportional to I,.

With mode decomposition, description of wakefields now becomes easier to
handle.

In most applications, it turns out that we care mostly about the m=0
monopole mode when discussing longitudinal collective instabilities, and
mostly about m=1 dipole and skew dipole modes when discussing transverse
collective instabilities.



Wake functions

Things begin to get complicated. To get a handle of this, we now introduce a
quantity called “wake functions”.

We mentioned the Panofsky-Wenzel theorem earlier without proof. It turns
out that the proof of this theorem contains a lot more information than just
the theorem itself. In particular, let us consider again the configuration when
a delta-function driving beam with transverse moment I,;, going down the
axis of the circular pipe. This beam will generate behind it a wakefield in the
m-th mode. It can be shown that, for a test charge e following behind this I,
beam by a distance z and having a transverse displacement of (r, 0), the
transverse and longitudinal components of the integrated wakefield impulse
can be written as

Fi(r8,z) = —el,Wy(z)mr™™ ! (roosmf — #sinmé)

Fy(r.0,2) = —elmW! (2)r™ cosmb

(1)

Here a prime denotes d/dz, W,(z) is called the transverse wake function and
W’ (z) the longitudinal wake function. The longitudinal wake function is
simply the z-derivative of the transverse wake function.

Equations (1) look rather complicated, and we have omitted its derivation,
but they are also quite amazing and contain a wealth of information. First of
all, you should be able to check explicitly that the Panofsky-Wenzel theorem

is obeyed by these expressions. We then note that the fact that Fis
proportional to e and I, is straightforward and you would have guessed it.

On the other hand, one sees that the dependences of F onm,r, and 0 have
all been explicitly solved. And this is done even without you being told
anything about the geometry of the vacuum chamber discontinuity or the
chamber wall's resistivity!

Homework 1
Show that Eqgs.(1) satisfy Panofsky-Wenzel theorem.



In Egs.(1), the only remaining unknown is the wake function W,(z), which
depends only on z. Furthermore, the transverse and the longitudinal wake
potentials involve the same function W,(z).

So for each vacuum chamber discontinuity, no matter how complicated its
geometry is, we have now reduced the wakefield problem to the wake
functions W,(z). For each discontinuity along the vacuum chamber, we just
ask the question, “What is the wake function of this discontinuity?” When
these wake functions are calculated, we will know the impulse each particle
in the beam receives from the collective waketfields generated by the beam.
And when that is known, we can analyze the stability of the beam.

As mentioned, for most cases, we are interested only in m=0 for longitudinal
beam instabilities, and m=1 for transverse instabilities. Therefore, for each
discontinuity, we just ask for two functions: W,’(z) and W(z), and we just
calculate these two functions for most applications.

Why do we not worry about m=0 for transverse instabilities?

—

Answer: F, =0 when m=0 (see the formula for F, ). So the leading
transverse contribution comes from m=1.



Table below lists the two moments (first the normal moment and then the
skew moment) of the driving beam and the associated transverse and
longitudinal impulses seen by a test charge e with transverse coordinates

(x,y) that follows at a distance z behind a beam which possesses an m-th
moment.

Table 1
Dhstribution
Moments of Leongitudinal Transverse
i) Beam Wake Potential Wake Potential
0 q —ag Wyiz) 0
v ~ea{z)=Wi(z) —ealm)Wi(2)
g} —eqiyyW{(z) —eglu Wiz )y
2 {Q{IE-:F} —eg(x® "y )Wi(z) | —2eqlz—y®) Walz)(x2 —yi)
q(2zy) —eqi2ry)2xy Walz) —2eq{2xy) Wyl 2){yi + xg)
g x—3zy?) —egq(x®-3ry®) —3eq{z® —Bry®Wy(z)
9 : <l 2i—2ry? ) W(z) w|{x? —g? )E — D]
g(3c"y—") —egq{3zy—1°) —3eq(3x’y —y" | Wi(z)
« (Bxty —o® WY (2) #|2ryE + (=8 —y7)d]

Homework 2

Table 1 is an important table. Follow the text and convince yourself of the
results established in the table.



Properties of wake functions

There are many interesting and very general properties of the wake functions:
e Woiz)=0, W, (2) =0 for z > 0 (causality).

® Wn(z) <0, Wp(z) 20 for z — 0.
e Win(0) = 0 (in most casss, except space charge).
e WL(0) = :H-';n(ﬂ‘) (fundamental theorem of beam loading).

o W) (0-) = |W/.(z)| for all z.

0 r - ~
o [C Wiiz)dz =0.

In general, W,(2) is a sine-like function, while W] (z) is a cosine-like func-
tion, as sketched below.

WmLEJ
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F4
causality
WmI[E]

fundamental theorem
‘,.f‘-:-t bearn loading

—wﬁ ‘H\h‘ z

causality

The lower curve is of course related to the upper one by taking derivative
with respect to z. You should check all the properties listed above are
satisfied by these curves.



As an illustration, let us prove the property W,,’(0") >0 here. Immediately
following the beam, we expect to see a longitudinal electric field that retards
the beam, regardless of vacuum chamber properties. This is because the
beam must not gain energy as it propagates down the pipe — otherwise we

can create a perpetual moving machine. This means the quantity j, 4 must
be negative, and in a few steps this proves W,,’(0") >0.

Homework 3

(a) Make sure that you follow the steps in the above proof for W,,,’(07) >0.
(b) Then show W,(07) <0 using the fact that W,,’(0") >0 and that W,(z>0)
=0.

There is also the interesting property that W,,’(0), evaluated exactly at z=0,
is always equal to 2 times the value W,,’(0") evaluated at z slightly less than
0. This is customarily referred to as the fundamental theorem of beam
loading — even though the reason behind it is rather simple and not quite so
fundamental.

One can also say something about the polarity of the transverse wake forces:

.......................................................................................................................................
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Figure 2.8. The polarity of the woke field alwoys hurts o short beam. For m =0, the
longitudinal wake force is retarding. For m =1, the transverse wake force further deflects the
test charge e. For m =2, the tall portion of an elliptical beam becomes further elongated.
Arrows represent the waoke force.

Conclusion: wakefields always do damages to short bunches!



Calculation of wakefields

Some analytically calculable examples of wakefields can be found later
together with their corresponding impedances. For a general situation when
there are no analytic results, one uses numerical calculations. There are
several computer codes that calculate either the wakefields or the
impedances. Some of these codes are commercially available, some are
developed by individual researchers.

In general, a code that calculates wakefields requires a short driving beam
that drives the electromagnetic fields in the vacuum chamber. The beam is
then made to propagate down the beam pipe, the fields calculated, and the
force on a trailing test particle is integrated (to get the impulse). Such an
approach is called a time-domain approach.

There are also codes that calculate impedances instead of wakefields. In
such codes, the driving beam is considered to be infinitely long and is
sinusoidal with frequency w, and all wakefields as well as the integrated
voltage respond to the same frequency. The ratio of this voltage and the
driving current then yields the impedance at frequency w. Such an approach
is called a frequency-domain approach.

The time-domain calculation of the wake functions and the frequency-
domain calculation of the impedances are completely equivalent. They are
related by Fourier transforms. For example, when a time-domain code is
used and wake functions calculated, people typically make Fourier
transforms and print the output of the impedances as a by-product.



Here is one example of a time-domain calculation:
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In a time-domain calculation, the integrated wake impulse is numerically
calculated for a test charge following a short Gaussian driving bunch. To
calculate accurately, one should use as short a driving bunch as possible. If
the driving bunch is not short enough, the short-range contents (or
equivalently, the high frequency content) of the wakefield will be lost. It is
difficult to calculate wakefields at short ranges (or equivalently, impedances
at high frequencies). At the least, the number of mesh points will have to be
increased sharply, and computing time becomes an issue.



Impedances [H /B

We talked about frequency content of the wakfields and mentioned that its
wavelengths cover a wide range from ~1 um to ~1 m. The quantities that
characterize the frequency content of the wakefields are the impedances,
which are nothing but the Fourier transforms of the wake functions,

x' bd
~ \_(-v:"'r 7l [\
Z) (w) = / Z et v (3)
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: dZ e fovee 4 A
Zg(w) = — | —e I Wi(2)
v/fe v

Since we have already discussed the wake functions, we consider these
equations simply the definition of impedances.

Instead of asking about wake functions, an accelerator designer therefore
could alternatively ask: “What is the impedance of your accelerator?” The
impedance is the quantity most directly related to the maximum beam
current that can be accepted by the accelerator.



Properties of impedances

Eﬂ:[-.ujl = EE; |w) (Pancfeky-Wenzel theorem in frequency domain).
o
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transform)  The same E-:Lpreaau:-ns apply to Eé. PV means taking the
principal value of the integral.
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expressions relating transverse and longitudinal impedances, b= pipe
radius. They are exact for resistive round pipe.

2
bQ Zo Zt ~ b2 Z A %ﬁzg These are approximate



Some expressions of impedances and wake functions

To find the impedance for a given vacuum chamber discontinuity, one needs
to solve Maxwell equations for the electromagnetic fields produced in the
vacuum chamber. Over the years, a large arsenal of techniques had been
developed to calculate the impedances. Most results involve numerically
solving the associated boundary value problems.

We mentioned that there are 3 ways when wakefields are generated. Three
cases, each representing one of these 3 ways, that permit analytical

expressions are given below. A lot more examples can be found in the
Handbook.

Direct space charge

Impedances Wake functions
ZyLw b ., ZocL b\
Z) =i 4:0?2 (1 +2In E) Wy = 4;: (1 +2In Z) & (2)
Z 0 L 1 ]. . Z 0 CL 1 1 -
J’ ——J | - f— a4y Iy — - — -
Zm'i.':' o 271"‘,'3772. (a?-m b‘.?m) " mF 27.—7‘2,,,‘ (a'zm 2m )0(”)

2 =377 Q is the free-space impedance.

where Zo=(u/€o)
This case is in free space; there is no vacuum chamber, therefore no vacuum
chamber discontinuity and no resistive wall. So why is there a wakefield and
impedance? The answer is that the beam is not ultrarelativistic. Indeed, you
should note that these wakefield and impedances are proportional to 1/y".
For unltrarelativistic beam, they vanish.

Space charge effects are most significant only for low-to-medium energy
proton or heavy ion accelerators. TPS, for example, will not suffer from
space charge instability because vy is so large. This impedance is purely
imaginary. By the sign of its imaginary part, we call this impedance
“capacitive”.



Resistive wall

The second way to produce wakefield is when the vacuum chamber wall is
resistive:

[mpedances Wake functions
w i ] Zo L
zlh ==z+ Wi = — = \/
T eTm m b (1 + Gpnp) V 7o, |2]1/2
I 1 —sgn(w) L . c Zo L
Zm = > ‘4771 = = . B
1+ 8om 7O OekinbPmH! 2rb™ (1 + dppo) ¥ oo |2[3/2

The impedance is proportional to 1-i, i.e. it is “half resistive and half
inductive”.



Slowly varying wall boundaries

The third way is when the vacuum chamber has discontinuities, even though
perfectly conducting. Consider a case when the vacuum chamber wall varies
along the accelerator slowly, a perturbation technique can be used to
calculate the impedances. Specify the wall variation by h(z) (1-dimensional
cylindrically symmetric bump). At low frequencies k=w/c < 1/(bump length
or width), the impedance is purely inductive,

2ikZo [° .- 5
Z,| = — : 7 / f|.|h:f\. | -l.[f{
) Jo
. ]. - ; ) ilso
where h(k) = 5 / h(z)e ***dz
and k=w/c.

Homework 4

Calculate EH for

10cm i0cm
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When the boundary varies rapidly, this impedance formula breaks down, and
most likely numerical calculation has to be applied.



Resonator model

The longitudinal impedance can often be modeled by an equivalent parallel
LRC resonator circuit,
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ZII___
m w w
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where Q = RsVC/L is the quality factor and @= = 1/ VCL s the resonant
frequency. The width (half width at half maximum) of the resonance peak of
Re Z) (@) is about A@ = wr/2Q jf Q>>1. A sharply peaked impedance
has Q>>1, while a broad-band impedance has Q~1.




The corresponding wake function (Fourier transform) is

+ —sin—

W,(z) = 2aR; e""/"(cos
¢ ) c
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) I = 0o :
At low frequencies w<<wg, Z,(w) -ioL 1s inductive. For o>>wg, we

I as . L .
have Zm (@) ~1/wC, which is capacitive. Around the resonant frequency

. I = . . .
w~mg, the impedance Z,(w) = Rg is mostly resistive.

The same resonator also contributes to a transverse impedance,
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The corresponding transverse wake function is
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We mentioned earlier that the RF cavities often represent the largest
discontinuities, and therefore sometimes the largest source of impedance.
The accelerating mode (the fundamental mode) of an RF cavity typically has
a Q-value ~10*. This means the electromagnetic fields trapped in the
fundamental mode of the cavity will make ~10* oscillations before they
decay significantly. For most discontinuities on the vacuum chamber walls,
however, the wakefields decay much faster. Many of them in fact can be
modeled as a resonator model with Q~1.

For a low-Q object of the size of the order of the beam pipe radius b, a
broad-band resonator model of its impedance would have the resonator

parameters:
RS = Z()//zﬂi ~ 60 Q
Q=1

wr =c¢/b



The quantity Z/n

In some accelerators (most likely the earlier accelerators, such as an older
synchrotron), beam bunches are long. For example, some have bunches
longer than 1m, or at least several cm. In these cases, when the bunches are
longer than the vacuum chamber pipe radius, it turns out that often it is the
lower frequencies of the wakefields that dominate the collective instabilities.

We mentioned before that for longitudinal instabilities, it is the m=0 effects

that dominates. This means we must pay most attention to - H :

From the properties of impedances given above, we know that EH (w=0) =0.

le

For small w, this means Im(““0) (w) is proportional to w. For older
synchrotrons, the instability is therefore specified by the low-frequency

ol rdl

slope of Im(‘er 0) (w), 1.e. we need a quantity Im(ZEI ) () / ® at w — 0. Such
a quantity is called Z/n. We therefore ask the question, ”what is the value of
Z/n of your synchrotron?” By Z/n, we mean:

Al
Z/n = ( the low-frequency slope Im(Z':I )(w)/w ) X w

where my is just the revolution frequency of the synchrotron.

Note that this Z/n quantity is a single-valued quantity, in units of Ohms. In
comparison, the impedance is a much more complicated quantity because it
is an entire function of frequency. By using Z/n, the entire problem of beam
instability becomes a simple question of how large is the value of a single
quantity Z/n. It is clear that this single value Z/n will not completely
describe the instabilities, and it represents an oversimplification of the
problem. But for older synchrotrons, it turns out not too bad an
oversimplification.



It is an impressive accomplishment of the accelerator physicists to manage
to zero in on a single key quantity to address such a complex physical
problem. #1223} 4% Their hard work = %11 # ¥z is summarized again in
the following framework FI[/= T ZLAEHY A ZEAH:

A seemingly impossibly complex electromagnetic problem with 3-
dimensional boundaries

9
Realizing that for ultrarelativistic beams, it is only the impulse that
counts
9
Panofsky-Wenzel theorem
9
Wake functions W ,(z)
9
Impedances Z,(w)
9

Z/n

The fact that this drastic simplification is even possible is a very lucky
blessing from Mother Nature. FF— XY E £ |



Careless limit of Z/n

Consider a cavity structure of the size of the pipe radius b on the vacuum
chamber. Its impedance can be represented as a broad-band resonator model.
In terms of Z/n, it will contribute

Z/n per cavity ~ (Z/2m) (wy/wR) (2)

where wr = ¢/b and wy=c/R and 2xtR is circumference of the circular
accelerator.

If one now imagines a carelessly built accelerator in which the vacuum
chamber is filled with all sorts of cavities and discontinuities of
approximately the same size as the pipe radius, the total Z/n around the
circumference is

(Z/n total) ~ (Z/n per cavity) neay

where n.,, = 2tR/2b is the total number of cavities around the circumference.
This carelessly designed accelerator has

(Z/n total) ~ (Zo/2) ~ 160 Q

This is the careless limit of impedance. You cannot do worse than that. Note
that this limit is a fundamental constant, independent of the accelerator size
R and the pipe size b.

In case a fraction ~f of the accelerator is filled with cavities, one has

Zh~ f X (160 Q)

In a typical modern accelerator, attempts are made to make Z/n less than 1 Q
or so. This means the vacuum chamber has to be sufficiently smooth to
suppress the impedance by a factor of a few hundred compared with the
careless limit.

Homework 5
Derive Eq.(2) for Z/n of a broad band resonator.



Impedance at high frequencies

For the more modern accelerators, however, particularly when the beam
bunches gets shorter and peak intensity gets higher, the single value Z/n no
longer provides a complete picture. The collective instability problem
becomes more difficult. The single value of Z/n suffices for older
synchrotrons, but not for these modern applications. For these applications,
we need not only Z/n but also the entire impedance functions, particularly at
high frequencies. Unfortunately, high frequency is also where impedance is
most difficult to measure or to calculate.

The research on impedances —EBi/F22HY 77 1A] involves bench measurement

of impedance components (electronics, rf techniques), analysis
(electromagnetism problems with boundary conditions), computation
physics (3-dimensional boundary value problems with very fine meshes,
inverting 10° x 10° matrices!). High power computing is one important
resource needed.



3. Collective Instabilities

We described wakefields and impedances. We still need to describe how to
use these quantities to calculate beam instabilities. For example: Given the
impedance, is the beam stable? If it is unstable, what happens to the beam?
What is the instability growth rate?

As mentioned before, there are a large number of instability mechanisms.
We will briefly describe three of them below:

o Parasitic heating

o Robinson instability

o Strong head-tail instability



Parasitic heating

When a beam bunch of charge q and line density A(t) traverses an impedance
region in the vacuum chamber, it suffers some energy loss to the impedance.

Let the longitudinal impedance be Zg (w). This parasitic energy loss
(sometimes also called HOM heating, HOM means “higher order modes”)
by the beam bunch is given by

.ALC = —K 412
where 5 is called the loss factor,
, ‘ ] e - ‘ N , 2
k'(o)=— dw ReZ;(w) |A(w)]|”
T Jo

For a Gaussian bunch, we have

~

A=et/2 [(V2r0), ANw) =e w7 /2,
Only the real part (the resistive part) of the impedance contributes to the
parasitic loss. Inductive impedances and the space charge or the slowly
varying wall impedances do not introduce a net energy loss to the beam.
However, this does not mean that individual particles do not change their
energies. It only means that the energy loss by particles at the head of the
bunch is recovered by particles in the tail of the bunch, so that there are only
energy transfers but no net energy loss of the entire beam bunch.

In general, it happens that this beam energy loss becomes large for short
bunches. Parasitic heating is mainly a problem for high intensity, and short,
bunches. Substitute in the impedance of a resistive wall, for example, gives a
formula

L I - 1/2 .
Ki'o) _ llT.( ( Zo ) . l|—i' — 1.995

]‘ 1,‘7.—)1)(7:-:; 2 _Q’T".



Parasitic loss gives rise to heating of the vacuum chamber wall where there
are impedances. For example, in high intensity electron storage rings, the
beam position monitors or bellows can easily heat up and get burned. This is
especially serious when short bunches are required for the applications.

Most of the parasitic loss occurs as the beam traverses a discontinuous
structure in the vacuum chamber pipe. Part of the wakefield gets trapped by
the structure if the structure is cavity-like and if the wakefield frequency is
below the cutoff frequency of the pipe. This trapped field energy is
eventually deposited as heat on the cavity walls. The rest of the wakefield,
with frequency higher than the cutoff frequency, propagates down the pipe
and eventually deposits its energy on lossy material elsewhere in the vacuum
chamber, much like heating a potato in a microwave oven.

The parasitic energy lost by the beam goes into wakefields. Typically, only a
small fraction of the particle energy is depleted to produce the wakefields,
and most of the energy stored in the wakefields ends up as heat on the
vacuum chamber walls. But under unfavorable conditions, a small portion of
the wakefield energy can be transferred systematically back to beam motion,
causing beam instabilities. The parasitic loss, therefore, is ultimately
responsible for the various collective beam instabilities. How the wakefields
affect the beam dynamics and what are the mechanisms of the various
collective beam instabilities are subjects to which we will have to study. The
parasitic energy loss itself, of course, will have to be supplied back to the
beam by an RF accelerating voltage.



Robinson instability

Robinson instability is one of the most basic instability mechanisms. It is a
longitudinal instability that occurs in circular accelerators. The main
contributor to this instability is the longitudinal impedance due to the RF
accelerating cavities. These cavities are tuned to have a resonant frequency
wp for its fundamental accelerating mode. This mode is where the klystrons
feed into, but at the same time, it is also a big source of wakefield and
impedance. Since we must have these modes in order to accelerate the beam,
we must accept the existence of these very big wakefield and impedance and
try to live with them.

In wakefield language, the fundamental mode is one of the m=0 modes with
its electric field mainly in the longitudinal direction. In fact, it is the biggest
m=0 mode in the entire accelerator. The real part of this impedance peaks at
wgr with a narrow width. The width is approximately given by Awg/wg =
+1/Q, where Q is the Q-value of the RF cavity’s accelerating mode.
Typically, Q ~10* (or 10° for superconducting cavities). So this impedance
is sharply peaked.

By design, wg is very close to an integer multiple of the revolution
frequency w, of the beam. This necessarily means that the wake field excited
by the beam in the cavities contains a major frequency component near wgr ~

hw, or equivalently, the impedance Zy has a sharp peak at wg = hwy, where
h is an integer called the harmonic number.

As we will soon show, the exact value of wg relative to hw, is of critical
importance for the stability of the beam. Above the transition energy, the
beam will be unstable if wg is slightly above hw, and stable if slightly below.
This instability mechanism was first analyzed by Robinson in 1964.



Kenneth Robinson (1925-1979)

To simplify the physical picture, let us consider a beam that is just a big
charge Ne. It has no internal structures, and is just a big point charge. This of
course is an over-simplification of a true beam bunch because internal
structures can be important. Some instabilities — in fact, many instabilities --
involves internal instabilities. So this over-simplified picture will miss all
those instabilities. However, this picture does allow descriptions of some
important instabilities, for example the Robinson instability, and we will
adopt this picture here. This picture is called a one-macroparticle model of
the beam.

The advantage of this one-macroparticle model is that it allows simple
analytical results. One can extend this idea and create a few two-
macroparticle models. They also describe other instabilities, particularly
those for which internal structures do play a role, and allow analytical results.
But we will not address these models yet.



Since Robinson instability is a longitudinal effect, we now consider the
longitudinal motion of this one-particle beam. Let z, be the longitudinal
displacement of the beam at the accelerating RF cavity in the n-th revolution,
measured relative to the center of an idealized bunch unaffected by
wakefields. The rate of change of z, is related to the relative energy error 9,
= AE/E of the beam in the same n-th revolution by (Z=tH7T)

d

i -nCéo,

where 1 is the slippage factor, C is the accelerator circumference. A

positive z, means the beam arrives the RF cavity earlier than the idealized
bunch.

The energy error also changes with time. Its equation of motion is

d (2mv,)’
_'an =4
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where v, is the synchrotron tune.

n

If we combine these two equations, we get a simple harmonic oscillation for
both z, and 9,
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The oscillation has a phase advance of 27v, per revolution. This oscillation
is just the synchrotron oscillation of the macroparticle beam. Typically, v,
<< 1, i.e., synchrotron oscillation is slow and the beam does not execute
much synchrotron motion during the time it completes one revolution.



But the above equation is valid only when the beam has a vanishing intensity.
Otherwise, the pure simple harmonic oscillation is perturbed. For an intense
beam, the energy variation also depends on the wake field generated by the
beam. The longitudinal wakefield affects the energy equation of motion. The
dd,/dn equation then acquires an additional term,

d (27v,)° Nr,
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where W' is the longitudinal wake function accumulated over one turn of
the accelerator. The summation over k is over the wakefields left behind by
the beam from all revolutions prior to the n-th. The argument of the wake
function is the longitudinal separation of beam positions between the n-th
and the k-th revolutions.

The equation of motion now becomes

dEE“ 2 er!iﬂc“ n ¢ v "
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We need now to solve this equation for z, as a function of turn number n. To
do so, we let z, be written as

z, o o~ T,

where Ty=C/c=2m/w, is the beam revolution period, and Q is the mode
frequency of the beam oscillation and is a key quantity yet to be determined.

Substituting into the equation of motion, we find an algebraic equation for Q,
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where w= v,y 1s the synchrotron oscillation frequency.



Now the wake function can be expressed in terms of the longitudinal
impedance by a Fourier transform. This yields
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Given the impedance, this equation can in principle be solved for Q. Note
that Q appears on both sides of the equation. Here, however, we will take a
perturbative approach and assume €2 does not deviate much from w; for
modest beam intensities. We thus replace €2 by ws on the right hand side of
the equation. Quantity Q is then easily solved.

In general, Q is complex. The real part of Q is the perturbed synchrotron
oscillation frequency of the collective beam motion, and the imaginary part
gives the growth rate (or damping rate if negative) of the motion. We then
obtain a mode frequency shift,

AQ = Re(Q - w,)
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and an instability growth rate,

= lm{”- - m_-;] = 9 z [ﬂm” + MSJRC zfl]l[pw“ T m"‘]

It is the imaginary part of the impedance that contributes to the collective
frequency shift and the real part that contributes to the instability growth rate.

Note that when we measure the synchrotron frequency in a real operation,
the frequency we measure is not ws, but the shifted mode frequency Q.



So far our results holds for arbitrary impedance. We now consider the
resonator impedance for the fundamental cavity mode. The only significant
contributions to the growth rate come from two terms in the summation,
namely p==h because the impedance is sharply peaked there. This gives
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Beam stability requires T ' <0. That is, the real part of the impedance must
be lower at frequency hwg+ws than at frequency hwg+ws if N>0 (above
transition), and the other way around if <0 (below transition). This
condition gives the important Robinson stability criterion that, above
transition, the resonant frequency wg of the fundamental cavity mode should
be slightly detuned downwards from an exact integral multiple of w,. Below
transition, stability requires wg be slightly higher than hw.
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Figure 4.4. lllusiration of the Robinson stability criterion. The rf fundamental mode is detuned
so that wy is (a) slightly below hw, and (b) slightly above hwg. (o) is Robinson domped above
transition and antidamped below fransition. (b) is antidamped above transition and domped
below transition.




When © ' <0, the Robinson mechanism leads to exponential damping of any
synchrotron oscillations of the beam. When © ™' <0, the beam is unstable
because any accidental small synchrotron oscillation of the beam would
grow exponentially with the instability growth rate, eventually leading to the
loss of the beam.

Robinson damping (or antidamping) can be rather strong. When the
Robinson criterion is met, the synchrotron oscillation of the beam is
“Robinson damped,” and this damping will help stabilizing the beam against
similar instabilities due to other impedance sources.

Physically, Robinson instability comes from the fact that the revolution
frequency of an off-momentum beam is not given by w, but by wg(1- nd).
To illustrate the physical origin of the Robinson instability mechanism,
consider a beam executing synchrotron oscillation above transition. Due to
the energy error of the beam, the impedance samples the beam signal at a
frequency slightly below hw, if >0, and slightly above hw, if 8<0. In order
to damp this synchrotron oscillation of the beam, we need to let the beam
lose energy when 0>0 and gain energy when >0. This can be achieved by
having an impedance that decreases with increasing frequency in the
neighborhood of hw,. The Robinson stability criterion then follows.



Strong head-tail instability

The next topic is to introduce another instability mechanism, this time a
transverse instability, called strong head-tail instability, and it is to be
discussed using a two-macroparticle model. But here we will not elaborate
on the analysis of this instability. Instead, we just mention that this
transverse instability was first observed and analyzed at PEP. When intensity
1s above a certain threshold, the beam is unstable. Below it, the beam is
stable but its motion is perturbed as seen below:
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You see here also that the observation and the analysis using a two-particle
model agree rather well.



The strong head-tail instability was also seen at LEP using a streak camera:

There are also many other instability mechanisms. Still another important
topic would be to discuss an effect called potential well distortion, or
potential well bunch lengthening. We will not cover all of them.



Further readings

A good fraction of the notes can be found in:
Handbook of Accelerator Physics and Engineering, ed. A. Chao and M.
Tigner, World Scientific, 3" print (2006).

For discussions emphasizing the physics principles, one may consult:
Physics of Collective Beam Instabilities in High Energy Accelerators, A.
Chao, Wiley (1993).

(welcome to download:
http://www.slac.stanford.edu/~achao/wileybook.html)

or
Physics of Intensity Dependent Beam Instabilities, K.Y. Ng, World
Scientific (2006).

For a much more extensive discussion on impedances, one may consult:
Impedances and Wakes in High-Energy Particle Accelerators, B. Zotter
and S. Kheifets, World Scientific (1997).



